A Connectedness Theorem for Real Spectra of Polynomial Rings

نویسنده

  • F. Lucas
چکیده

Let R be a real closed field. The Pierce-Birkhoff conjecture says that any piecewise polynomial function f on Rn can be obtained from the polynomial ring R[x1, . . . , xn] by iterating the operations of maximum and minimum. The purpose of this paper is twofold. First, we state a new conjecture, called the Connectedness conjecture, which asserts the existence of connected sets in the real spectrum of R[x1, . . . , xn] satisfying certain conditions. We prove that the Connectedness conjecture implies the Pierce-Birkhoff conjecture. Secondly, we construct a class of connected sets in the real spectrum which, though not in itself enough for the proof of the Pierce-Birkhoff conjecture, is the first and simplest example of the sort of connected sets we really need, and which constitutes a crucial step on the way to a proof of the Pierce-Birkhoff conjecture in dimension greater than 2, to appear in a subsequent paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Connectedness of Sets in the Real Spectra of Polynomial Rings

Let R be a real closed field. The Pierce-Birkhoff conjecture says that any piecewise polynomial function f on Rn can be obtained from the polynomial ring R[x1, . . . , xn] by iterating the operations of maximum and minimum. The purpose of this paper is threefold. First, we state a new conjecture, called the Connectedness conjecture, which asserts, for every pair of points α, β ∈ Sper R[x1, . . ...

متن کامل

Uniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces

We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...

متن کامل

On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields

We will prove that the Pierce-Birkhoff Conjecture holds for non-singular two-dimensional affine real algebraic varieties over real closed fields, i.e., if W is such a variety, then every piecewise polynomial function on W can be written as suprema of infima of polynomial functions on W . More precisely, we will give a proof of the so-called Connectedness Conjecture for the coordinate rings of s...

متن کامل

Rings with a setwise polynomial-like condition

Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006